
Python OOP: The Missing Pieces

Table of Contents

1. Introduction

2. The @property Decorator

2.1. Creating a Read-Only Property

2.2. Adding a Setter: Controlled Write Access

2.3. The Deleter: Cleaning Up

2.4. Why Use Properties?

2.5. Complete Example: Temperature Converter

3. Understanding super()

3.1. The Problem: Repeating Yourself

3.2. The Solution: Using super()

3.3. What super() Actually Returns

3.4. Extending Methods Beyond init

3.5. Practical Example: Building a User System

4. Duck Typing

4.1. The Philosophy

4.2. A Simple Example

4.3. Duck Typing vs Traditional Polymorphism

4.4. Real-World Duck Typing: File-Like Objects

4.5. Duck Typing with Iteration

4.6. Making Your Classes Duck-Type Friendly

4.7. Handling Duck Typing Failures

4.7.1. Option 1: EAFP (Easier to Ask Forgiveness than Permission)

4.7.2. Option 2: LBYL (Look Before You Leap)

4.7.3. Option 3: Use callable() for Methods

4.8. Duck Typing Summary

5. Putting It All Together

The "Java-style" approach (works, but not Pythonic)

Usage feels awkward

Usage feels natural

Now we have validated attribute access

Usage

Usage

Usage

Usage

None of these classes inherit from each other

But they all work because they have the same methods

Works with actual files

Works with StringIO (fake file in memory)

Works with BytesIO

All of these work because they’re all "iterable"

Now it works with for loops!

And with list()

Usage

Both work with the same function thanks to duck typing

1. Introduction

2. The @property Decorator

2.1. Creating a Read-Only Property

2.2. Adding a Setter: Controlled Write Access

2.3. The Deleter: Cleaning Up

2.4. Why Use Properties?

2.5. Complete Example: Temperature Converter

3. Understanding super()

3.1. The Problem: Repeating Yourself

3.2. The Solution: Using super()

3.3. What super() Actually Returns

3.4. Extending Methods Beyond init

3.5. Practical Example: Building a User System

4. Duck Typing

4.1. The Philosophy

4.2. A Simple Example

4.3. Duck Typing vs Traditional Polymorphism

4.4. Real-World Duck Typing: File-Like Objects

4.5. Duck Typing with Iteration

4.6. Making Your Classes Duck-Type Friendly

4.7. Handling Duck Typing Failures

4.7.1. Option 1: EAFP (Easier to Ask Forgiveness than Permission)

4.7.2. Option 2: LBYL (Look Before You Leap)

4.7.3. Option 3: Use callable() for Methods

4.8. Duck Typing Summary

5. Putting It All Together

6. Summary

7. Practice Exercises

8. Summary

9. Practice Exercises

1. Introduction

So you’ve learned about classes, objects, the three pillars of OOP, and even touched on composition vs inheritance. That’s a

solid foundation. But Python has a few more tricks up its sleeve that make working with objects feel natural and

"Pythonic."

Let’s dive into three topics that often get glossed over but are essential for writing clean, professional Python code.

2. The @property Decorator

Remember encapsulation? We learned that we can make attributes "private" using double underscores to protect them

from outside interference. But here’s the thing: sometimes you do need controlled access to those private attributes.

In languages like Java, you’d write explicit getX() and setX() methods. It works, but it’s verbose and clunky:

Python offers a more elegant solution: the @property decorator. It lets you define methods that look like simple attribute

access but actually run your custom code behind the scenes.

2.1. Creating a Read-Only Property

Notice how we access radius and area without parentheses. From the outside, they look like regular attributes. But

behind the scenes, Python is calling our methods.

2.2. Adding a Setter: Controlled Write Access

What if we want to allow changing the radius, but with validation? We add a setter using @property_name.setter :

The "Java-style" approach (works, but not Pythonic)
class Circle:
 def __init__(self, radius):
 self.__radius = radius

 def get_radius(self):
 return self.__radius

 def set_radius(self, value):
 if value > 0:
 self.__radius = value
 else:
 raise ValueError("Radius must be positive")

Usage feels awkward
c = Circle(5)
print(c.get_radius()) # 5
c.set_radius(10)

PYTHON

class Circle:
 def __init__(self, radius):
 self._radius = radius # Single underscore: "protected" by convention

 @property
 def radius(self):
 """The radius property (read-only for now)."""
 return self._radius

 @property
 def area(self):
 """Calculated property — no stored value needed."""
 return 3.14159 * self._radius ** 2

Usage feels natural
c = Circle(5)
print(c.radius) # 5 — looks like an attribute, but it's a method!
print(c.area) # 78.53975 — calculated on the fly

PYTHON

2.3. The Deleter: Cleaning Up

For completeness, you can also define what happens when someone tries to delete the attribute:

NOTE The deleter is rarely needed, but it’s available when you need it.

2.4. Why Use Properties?

Properties offer several advantages:

Clean interface: Users of your class interact with simple attributes, not method calls

Validation: You can enforce rules when values are set

Calculated attributes: Derive values on-the-fly without storing them

Backward compatibility: You can start with a simple attribute and later add a property without changing the interface

class Circle:
 def __init__(self, radius):
 self._radius = None # Will be set by the setter
 self.radius = radius # Use the setter for validation

 @property
 def radius(self):
 """Get the radius."""
 return self._radius

 @radius.setter
 def radius(self, value):
 """Set the radius with validation."""
 if value <= 0:
 raise ValueError("Radius must be positive")
 self._radius = value

 @property
 def area(self):
 """Calculated property."""
 return 3.14159 * self._radius ** 2

Now we have validated attribute access
c = Circle(5)
print(c.radius) # 5

c.radius = 10 # Works fine
print(c.radius) # 10

c.radius = -5 # Raises ValueError: Radius must be positive

PYTHON

@radius.deleter
def radius(self):
 """Handle deletion of radius."""
 print("Deleting radius...")
 self._radius = None

Usage
del c.radius # Prints: Deleting radius...

PYTHON

2.5. Complete Example: Temperature Converter

Both celsius and fahrenheit feel like simple attributes, but they’re actually properties with logic behind them. The

user doesn’t need to know or care about the implementation.

3. Understanding super()

We touched on inheritance and mentioned super() , but let’s really dig into what it does and why it matters.

When a child class inherits from a parent, sometimes you want to extend the parent’s behavior rather than completely

replace it. That’s where super() comes in.

3.1. The Problem: Repeating Yourself

Imagine you’re building on the Animal example:

class Temperature:
 """A temperature that can be accessed in Celsius or Fahrenheit."""

 def __init__(self, celsius=0):
 self._celsius = celsius

 @property
 def celsius(self):
 """Temperature in Celsius."""
 return self._celsius

 @celsius.setter
 def celsius(self, value):
 if value < -273.15:
 raise ValueError("Temperature cannot be below absolute zero")
 self._celsius = value

 @property
 def fahrenheit(self):
 """Temperature in Fahrenheit (calculated)."""
 return (self._celsius * 9/5) + 32

 @fahrenheit.setter
 def fahrenheit(self, value):
 """Set temperature using Fahrenheit."""
 celsius_value = (value - 32) * 5/9
 if celsius_value < -273.15:
 raise ValueError("Temperature cannot be below absolute zero")
 self._celsius = celsius_value

 def __repr__(self):
 return f"Temperature({self._celsius}°C / {self.fahrenheit}°F)"

Usage
temp = Temperature(25)
print(temp) # Temperature(25°C / 77.0°F)

temp.fahrenheit = 100
print(temp) # Temperature(37.77...°C / 100°F)

print(temp.celsius) # 37.77...
print(temp.fahrenheit) # 100

PYTHON

This works, but it violates DRY (Don’t Repeat Yourself). If Animal.init changes, you’d have to update every child class.

That’s a maintenance nightmare.

class Animal:
 def __init__(self, name, age):
 self.name = name
 self.age = age
 self.is_alive = True

 def speak(self):
 raise NotImplementedError("Subclass must implement")

class Dog(Animal):
 def __init__(self, name, age, breed):
 # Without super(), you'd have to repeat the parent's work:
 self.name = name # Duplicated!
 self.age = age # Duplicated!
 self.is_alive = True # Duplicated!
 self.breed = breed # Only this is new

 def speak(self):
 return f"{self.name} says Woof!"

PYTHON

3.2. The Solution: Using super()

3.3. What super() Actually Returns

When you call super() , Python returns a special proxy object that delegates method calls to the parent class. It’s

essentially saying: "Give me a way to call methods from my parent."

This is equivalent to the older, more explicit syntax:

class Animal:
 def __init__(self, name, age):
 self.name = name
 self.age = age
 self.is_alive = True

 def speak(self):
 raise NotImplementedError("Subclass must implement")

 def describe(self):
 return f"{self.name} is {self.age} years old"

class Dog(Animal):
 def __init__(self, name, age, breed):
 super().__init__(name, age) # Call the parent's __init__
 self.breed = breed # Add dog-specific attribute

 def speak(self):
 return f"{self.name} says Woof!"

 def describe(self):
 # Extend the parent's describe method
 base_description = super().describe()
 return f"{base_description} and is a {self.breed}"

Usage
rex = Dog("Rex", 5, "German Shepherd")

print(rex.name) # Rex (set by parent)
print(rex.age) # 5 (set by parent)
print(rex.is_alive) # True (set by parent)
print(rex.breed) # German Shepherd (set by child)

print(rex.speak()) # Rex says Woof!
print(rex.describe()) # Rex is 5 years old and is a German Shepherd

PYTHON

super().__init__(name, age)
PYTHON

Animal.__init__(self, name, age)
PYTHON

TIP

The super() syntax is preferred because:

It’s cleaner and more readable

It works correctly with multiple inheritance (more advanced topic)

If you rename the parent class, you don’t have to update the child

3.4. Extending Methods Beyond init

You can use super() in any method, not just init :

class Animal:
 def eat(self, food):
 print(f"{self.name} is eating {food}")
 self.hunger = 0

class Dog(Animal):
 def eat(self, food):
 if food == "chocolate":
 print(f"No! Chocolate is toxic for dogs!")
 return
 super().eat(food) # Call parent's eat method
 print(f"{self.name} wags tail happily")

rex = Dog("Rex", 5, "German Shepherd")
rex.hunger = 100

rex.eat("chocolate")
Output: No! Chocolate is toxic for dogs!

rex.eat("kibble")
Output: Rex is eating kibble
Rex wags tail happily

PYTHON

3.5. Practical Example: Building a User System

Each level builds on the previous one, and super() makes it seamless.

class User:
 """Base user class."""

 def __init__(self, username, email):
 self.username = username
 self.email = email
 self.is_active = True
 self.created_at = "2025-01-01" # Simplified

 def get_permissions(self):
 return ["read"]

 def __repr__(self):
 return f"User({self.username})"

class AdminUser(User):
 """Admin with elevated permissions."""

 def __init__(self, username, email, admin_level=1):
 super().__init__(username, email) # Set up base user stuff
 self.admin_level = admin_level

 def get_permissions(self):
 # Start with base permissions, then add more
 base_permissions = super().get_permissions()
 admin_permissions = ["write", "delete"]
 if self.admin_level >= 2:
 admin_permissions.append("manage_users")
 return base_permissions + admin_permissions

 def __repr__(self):
 return f"AdminUser({self.username}, level={self.admin_level})"

class SuperAdmin(AdminUser):
 """Super admin with all permissions."""

 def __init__(self, username, email):
 super().__init__(username, email, admin_level=3)

 def get_permissions(self):
 return super().get_permissions() + ["system_config", "view_logs"]

Usage
regular = User("alice", "alice@example.com")
admin = AdminUser("bob", "bob@example.com", admin_level=2)
super_admin = SuperAdmin("charlie", "charlie@example.com")

print(regular.get_permissions())
['read']

print(admin.get_permissions())
['read', 'write', 'delete', 'manage_users']

print(super_admin.get_permissions())
['read', 'write', 'delete', 'manage_users', 'system_config', 'view_logs']

PYTHON

““

4. Duck Typing

The presentation mentioned duck typing briefly, but it deserves a deeper look because it’s fundamental to how Python

thinks about objects.

4.1. The Philosophy

The name comes from the saying:

If it walks like a duck and quacks like a duck, then it probably is a duck.

In Python terms: we don’t care what type an object is, only what it can do.

Unlike languages like Java or C++, Python doesn’t require objects to inherit from a common parent or implement a formal

interface. If an object has the method you need, you can use it.

4.2. A Simple Example

The make_it_speak function works with any object that has a speak method. It doesn’t check types, it just tries to use the

method.

4.3. Duck Typing vs Traditional Polymorphism

With traditional inheritance-based polymorphism, you’d write:

class Duck:
 def speak(self):
 return "Quack!"

 def swim(self):
 return "Duck is swimming"

class Person:
 def speak(self):
 return "Hello!"

 def swim(self):
 return "Person is swimming"

class Robot:
 def speak(self):
 return "Beep boop!"

 def swim(self):
 return "Robot is short-circuiting!"

def make_it_speak(thing):
 """This function doesn't care about the type of 'thing'."""
 print(thing.speak())

def pool_party(participants):
 """Everyone goes swimming!"""
 for participant in participants:
 print(participant.swim())

None of these classes inherit from each other
But they all work because they have the same methods
duck = Duck()
person = Person()
robot = Robot()

make_it_speak(duck) # Quack!
make_it_speak(person) # Hello!
make_it_speak(robot) # Beep boop!

pool_party([duck, person, robot])
Duck is swimming
Person is swimming
Robot is short-circuiting!

PYTHON

This works, but Python’s duck typing lets you skip the formal hierarchy entirely. Your classes don’t need to know about

each other or share a parent.

4.4. Real-World Duck Typing: File-Like Objects

Python’s standard library uses duck typing extensively. Consider reading data:

The process_data function doesn’t check if it received a "real" file. It just needs something with a read() method.

4.5. Duck Typing with Iteration

You’ve been using duck typing since Chapter 2 without realizing it:

class Speakable:
 def speak(self):
 raise NotImplementedError

class Duck(Speakable):
 def speak(self):
 return "Quack!"

class Person(Speakable):
 def speak(self):
 return "Hello!"

PYTHON

def process_data(data_source):
 """Process data from anything that has a read() method."""
 content = data_source.read()
 return content.upper()

Works with actual files
with open("myfile.txt") as f:
 result = process_data(f)

Works with StringIO (fake file in memory)
from io import StringIO
fake_file = StringIO("hello world")
result = process_data(fake_file) # "HELLO WORLD"

Works with BytesIO
from io import BytesIO
byte_file = BytesIO(b"hello world")
(would need .decode() but you get the idea)

PYTHON

def print_all(items):
 """Print each item. Works with anything iterable."""
 for item in items:
 print(item)

All of these work because they're all "iterable"
print_all([1, 2, 3]) # List
print_all((1, 2, 3)) # Tuple
print_all({1, 2, 3}) # Set
print_all("abc") # String
print_all(range(3)) # Range
print_all({"a": 1, "b": 2}) # Dict (iterates keys)

PYTHON

The for loop doesn’t check types. It just needs an object that supports iteration (has iter method).

4.6. Making Your Classes Duck-Type Friendly

Want your custom class to work with for loops? Just implement the right methods:

4.7. Handling Duck Typing Failures

What happens when duck typing fails? The object doesn’t have the method you expected:

You have options for handling this:

4.7.1. Option 1: EAFP (Easier to Ask Forgiveness than Permission)

This is the Pythonic way:

class Countdown:
 """A countdown that can be iterated."""

 def __init__(self, start):
 self.start = start

 def __iter__(self):
 """Make this class iterable."""
 self.current = self.start
 return self

 def __next__(self):
 """Return the next value."""
 if self.current < 0:
 raise StopIteration
 value = self.current
 self.current -= 1
 return value

Now it works with for loops!
for num in Countdown(5):
 print(num)
Output: 5, 4, 3, 2, 1, 0

And with list()
numbers = list(Countdown(3)) # [3, 2, 1, 0]

PYTHON

class Rock:
 pass # Rocks don't speak

def make_it_speak(thing):
 print(thing.speak())

rock = Rock()
make_it_speak(rock) # AttributeError: 'Rock' object has no attribute 'speak'

PYTHON

4.7.2. Option 2: LBYL (Look Before You Leap)

Check first using hasattr() :

4.7.3. Option 3: Use callable() for Methods

NOTE

EAFP (try/except) is generally preferred in Python because:

It’s often faster when the method usually exists

It’s more Pythonic

It handles edge cases better

4.8. Duck Typing Summary

Concept Description

Core Idea Care about behavior, not type

Benefit Flexible, loosely-coupled code

Risk Runtime errors if object lacks expected method

Best Practice Use try/except (EAFP) for graceful handling

Common Uses Iteration, file operations, context managers

5. Putting It All Together

Let’s build a small example that combines all three concepts:

def make_it_speak(thing):
 try:
 print(thing.speak())
 except AttributeError:
 print(f"{type(thing).__name__} cannot speak")

make_it_speak(Rock()) # "Rock cannot speak"

PYTHON

def make_it_speak(thing):
 if hasattr(thing, 'speak'):
 print(thing.speak())
 else:
 print(f"{type(thing).__name__} cannot speak")

PYTHON

def make_it_speak(thing):
 speak_method = getattr(thing, 'speak', None)
 if callable(speak_method):
 print(speak_method())
 else:
 print(f"{type(thing).__name__} cannot speak")

PYTHON

The "Java-style" approach (works, but not Pythonic)

class Circle: def init(self, radius): self.__radius = radius

class DataSource:
 """Base class for data sources using properties and meant for duck typing."""

 def __init__(self, name):
 self._name = name
 self._data = []

 @property
 def name(self):
 return self._name

 @property
 def record_count(self):
 """Calculated property."""
 return len(self._data)

 def read(self):
 """Duck typing target: anything with read() can be a data source."""
 raise NotImplementedError

class CSVSource(DataSource):
 """Reads data from a CSV-like format."""

 def __init__(self, name, raw_text):
 super().__init__(name) # Call parent's __init__
 self._raw_text = raw_text
 = Python OOP: The Missing Pieces
:toc:
:toc-placement: left
:toclevels: 3
:sectnums:
:source-highlighter: pygments

== Introduction

So you've learned about classes, objects, the three pillars of OOP, and even touched on composition vs
inheritance. That's a solid foundation. But Python has a few more tricks up its sleeve that make working with
objects feel natural and "Pythonic."

Let's dive into three topics that often get glossed over but are essential for writing clean, professional Python
code.

== The @property Decorator

Remember encapsulation? We learned that we can make attributes "private" using double underscores to protect them
from outside interference. But here's the thing: sometimes you _do_ need controlled access to those private
attributes.

In languages like Java, you'd write explicit `getX()` and `setX()` methods. It works, but it's verbose and clunky:

[source,python]

PYTHON

def get_radius(self):
 return self.__radius

def set_radius(self, value):
 if value > 0:
 self.__radius = value
 else:
 raise ValueError("Radius must be positive")

Usage feels awkward

c = Circle(5) print(c.get_radius()) # 5 c.set_radius(10)

class Circle: def init(self, radius): self._radius = radius # Single underscore: "protected" by convention

@property
def radius(self):
 """The radius property (read-only for now)."""
 return self._radius

@property
def area(self):
 """Calculated property — no stored value needed."""
 return 3.14159 * self._radius ** 2

Usage feels natural

c = Circle(5) print(c.radius) # 5 — looks like an attribute, but it’s a method! print(c.area) # 78.53975 — calculated on the fly

class Circle: def init(self, radius): self._radius = None # Will be set by the setter self.radius = radius # Use the setter for

validation

Python offers a more elegant solution: the `@property` decorator. It lets you define methods that _look_ like
simple attribute access but actually run your custom code behind the scenes.

=== Creating a Read-Only Property

[source,python]

Notice how we access `radius` and `area` without parentheses. From the outside, they look like regular attributes.
But behind the scenes, Python is calling our methods.

=== Adding a Setter: Controlled Write Access

What if we want to allow changing the radius, but with validation? We add a setter using `@property_name.setter`:

[source,python]

@property
def radius(self):
 """Get the radius."""
 return self._radius

@radius.setter
def radius(self, value):
 """Set the radius with validation."""
 if value <= 0:
 raise ValueError("Radius must be positive")
 self._radius = value

@property
def area(self):
 """Calculated property."""
 return 3.14159 * self._radius ** 2

Now we have validated attribute access

c = Circle(5) print(c.radius) # 5

c.radius = 10 # Works fine print(c.radius) # 10

c.radius = -5 # Raises ValueError: Radius must be positive

@radius.deleter def radius(self): """Handle deletion of radius.""" print("Deleting radius…​") self._radius = None

Usage

del c.radius # Prints: Deleting radius…​

=== The Deleter: Cleaning Up

For completeness, you can also define what happens when someone tries to delete the attribute:

[source,python]

class Temperature: """A temperature that can be accessed in Celsius or Fahrenheit."""

def __init__(self, celsius=0):
 self._celsius = celsius

@property
def celsius(self):
 """Temperature in Celsius."""
 return self._celsius

@celsius.setter
def celsius(self, value):
 if value < -273.15:
 raise ValueError("Temperature cannot be below absolute zero")
 self._celsius = value

@property
def fahrenheit(self):
 """Temperature in Fahrenheit (calculated)."""
 return (self._celsius * 9/5) + 32

@fahrenheit.setter
def fahrenheit(self, value):
 """Set temperature using Fahrenheit."""
 celsius_value = (value - 32) * 5/9
 if celsius_value < -273.15:
 raise ValueError("Temperature cannot be below absolute zero")
 self._celsius = celsius_value

def __repr__(self):
 return f"Temperature({self._celsius}°C / {self.fahrenheit}°F)"

[NOTE]
====
The deleter is rarely needed, but it's available when you need it.
====

=== Why Use Properties?

Properties offer several advantages:

* **Clean interface**: Users of your class interact with simple attributes, not method calls
* **Validation**: You can enforce rules when values are set
* **Calculated attributes**: Derive values on-the-fly without storing them
* **Backward compatibility**: You can start with a simple attribute and later add a property without changing the
interface

=== Complete Example: Temperature Converter

[source,python]

Usage

temp = Temperature(25) print(temp) # Temperature(25°C / 77.0°F)

temp.fahrenheit = 100 print(temp) # Temperature(37.77…​°C / 100°F)

print(temp.celsius) # 37.77…​print(temp.fahrenheit) # 100

class Animal: def init(self, name, age): self.name = name self.age = age self.is_alive = True

def speak(self):
 raise NotImplementedError("Subclass must implement")

class Dog(Animal): def init(self, name, age, breed): # Without super(), you’d have to repeat the parent’s work: self.name =

name # Duplicated! self.age = age # Duplicated! self.is_alive = True # Duplicated! self.breed = breed # Only this is new

def speak(self):
 return f"{self.name} says Woof!"

class Animal: def init(self, name, age): self.name = name self.age = age self.is_alive = True

def speak(self):
 raise NotImplementedError("Subclass must implement")

def describe(self):
 return f"{self.name} is {self.age} years old"

Both `celsius` and `fahrenheit` feel like simple attributes, but they're actually properties with logic behind
them. The user doesn't need to know or care about the implementation.

== Understanding super()

We touched on inheritance and mentioned `super()`, but let's really dig into what it does and why it matters.

When a child class inherits from a parent, sometimes you want to _extend_ the parent's behavior rather than
completely replace it. That's where `super()` comes in.

=== The Problem: Repeating Yourself

Imagine you're building on the `Animal` example:

[source,python]

This works, but it violates DRY (Don't Repeat Yourself). If `Animal.__init__` changes, you'd have to update every
child class. That's a maintenance nightmare.

=== The Solution: Using super()

[source,python]

class Dog(Animal): def init(self, name, age, breed): super().init(name, age) # Call the parent’s init self.breed = breed # Add

dog-specific attribute

def speak(self):
 return f"{self.name} says Woof!"

def describe(self):
 # Extend the parent's describe method
 base_description = super().describe()
 return f"{base_description} and is a {self.breed}"

Usage

rex = Dog("Rex", 5, "German Shepherd")

print(rex.name) # Rex (set by parent) print(rex.age) # 5 (set by parent) print(rex.is_alive) # True (set by parent)

print(rex.breed) # German Shepherd (set by child)

print(rex.speak()) # Rex says Woof! print(rex.describe()) # Rex is 5 years old and is a German Shepherd

super().init(name, age)

Animal.init(self, name, age)

class Animal: def eat(self, food): print(f"{self.name} is eating {food}") self.hunger = 0

=== What super() Actually Returns

When you call `super()`, Python returns a special proxy object that delegates method calls to the parent class.
It's essentially saying: "Give me a way to call methods from my parent."

[source,python]

This is equivalent to the older, more explicit syntax:

[source,python]

[TIP]
====
The `super()` syntax is preferred because:

* It's cleaner and more readable
* It works correctly with multiple inheritance (more advanced topic)
* If you rename the parent class, you don't have to update the child
====

=== Extending Methods Beyond __init__

You can use `super()` in any method, not just `__init__`:

[source,python]

class Dog(Animal): def eat(self, food): if food == "chocolate": print(f"No! Chocolate is toxic for dogs!") return

super().eat(food) # Call parent’s eat method print(f"{self.name} wags tail happily")

rex = Dog("Rex", 5, "German Shepherd") rex.hunger = 100

rex.eat("chocolate") # Output: No! Chocolate is toxic for dogs!

rex.eat("kibble") # Output: Rex is eating kibble # Rex wags tail happily

class User: """Base user class."""

def __init__(self, username, email):
 self.username = username
 self.email = email
 self.is_active = True
 self.created_at = "2025-01-01" # Simplified

def get_permissions(self):
 return ["read"]

def __repr__(self):
 return f"User({self.username})"

class AdminUser(User): """Admin with elevated permissions."""

def __init__(self, username, email, admin_level=1):
 super().__init__(username, email) # Set up base user stuff
 self.admin_level = admin_level

def get_permissions(self):
 # Start with base permissions, then add more
 base_permissions = super().get_permissions()
 admin_permissions = ["write", "delete"]
 if self.admin_level >= 2:
 admin_permissions.append("manage_users")
 return base_permissions + admin_permissions

def __repr__(self):
 return f"AdminUser({self.username}, level={self.admin_level})"

class SuperAdmin(AdminUser): """Super admin with all permissions."""

def __init__(self, username, email):
 super().__init__(username, email, admin_level=3)

=== Practical Example: Building a User System

[source,python]

def get_permissions(self):
 return super().get_permissions() + ["system_config", "view_logs"]

Usage

regular = User("alice", "alice@example.com") admin = AdminUser("bob", "bob@example.com", admin_level=2)

super_admin = SuperAdmin("charlie", "charlie@example.com")

print(regular.get_permissions()) # ['read']

print(admin.get_permissions()) # ['read', 'write', 'delete', 'manage_users']

print(super_admin.get_permissions()) # ['read', 'write', 'delete', 'manage_users', 'system_config', 'view_logs']

class Duck: def speak(self): return "Quack!"

def swim(self):
 return "Duck is swimming"

class Person: def speak(self): return "Hello!"

def swim(self):
 return "Person is swimming"

class Robot: def speak(self): return "Beep boop!"

Each level builds on the previous one, and `super()` makes it seamless.

== Duck Typing

The presentation mentioned duck typing briefly, but it deserves a deeper look because it's fundamental to how
Python thinks about objects.

=== The Philosophy

The name comes from the saying:

[quote]

If it walks like a duck and quacks like a duck, then it probably is a duck.

In Python terms: *we don't care what type an object _is_, only what it can _do_.*

Unlike languages like Java or C++, Python doesn't require objects to inherit from a common parent or implement a
formal interface. If an object has the method you need, you can use it.

=== A Simple Example

[source,python]

mailto:alice@example.com
mailto:bob@example.com
mailto:charlie@example.com

def swim(self):
 return "Robot is short-circuiting!"

def make_it_speak(thing): """This function doesn’t care about the type of 'thing'.""" print(thing.speak())

def pool_party(participants): """Everyone goes swimming!""" for participant in participants: print(participant.swim())

None of these classes inherit from each other

But they all work because they have the same methods

duck = Duck() person = Person() robot = Robot()

make_it_speak(duck) # Quack! make_it_speak(person) # Hello! make_it_speak(robot) # Beep boop!

pool_party([duck, person, robot]) # Duck is swimming # Person is swimming # Robot is short-circuiting!

class Speakable: def speak(self): raise NotImplementedError

class Duck(Speakable): def speak(self): return "Quack!"

class Person(Speakable): def speak(self): return "Hello!"

def process_data(data_source): """Process data from anything that has a read() method.""" content = data_source.read()

return content.upper()

Works with actual files

with open("myfile.txt") as f: result = process_data(f)

The `make_it_speak` function works with _any_ object that has a `speak` method. It doesn't check types, it just
tries to use the method.

=== Duck Typing vs Traditional Polymorphism

With traditional inheritance-based polymorphism, you'd write:

[source,python]

This works, but Python's duck typing lets you skip the formal hierarchy entirely. Your classes don't need to know
about each other or share a parent.

=== Real-World Duck Typing: File-Like Objects

Python's standard library uses duck typing extensively. Consider reading data:

[source,python]

Works with StringIO (fake file in memory)

from io import StringIO fake_file = StringIO("hello world") result = process_data(fake_file) # "HELLO WORLD"

Works with BytesIO

from io import BytesIO byte_file = BytesIO(b"hello world") # (would need .decode() but you get the idea)

def print_all(items): """Print each item. Works with anything iterable.""" for item in items: print(item)

All of these work because they’re all "iterable"

print_all([1, 2, 3]) # List print_all1, 2, 3 # Tuple print_all({1, 2, 3}) # Set print_all("abc") # String print_all(range(3)) # Range

print_all({"a": 1, "b": 2}) # Dict (iterates keys)

class Countdown: """A countdown that can be iterated."""

def __init__(self, start):
 self.start = start

def __iter__(self):
 """Make this class iterable."""
 self.current = self.start
 return self

def __next__(self):
 """Return the next value."""
 if self.current < 0:
 raise StopIteration
 value = self.current
 self.current -= 1
 return value

The `process_data` function doesn't check if it received a "real" file. It just needs something with a `read()`
method.

=== Duck Typing with Iteration

You've been using duck typing since Chapter 2 without realizing it:

[source,python]

The `for` loop doesn't check types. It just needs an object that supports iteration (has `__iter__` method).

=== Making Your Classes Duck-Type Friendly

Want your custom class to work with `for` loops? Just implement the right methods:

[source,python]

Now it works with for loops!

for num in Countdown(5): print(num) # Output: 5, 4, 3, 2, 1, 0

And with list()

numbers = list(Countdown(3)) # [3, 2, 1, 0]

class Rock: pass # Rocks don’t speak

def make_it_speak(thing): print(thing.speak())

rock = Rock() make_it_speak(rock) # AttributeError: 'Rock' object has no attribute 'speak'

def make_it_speak(thing): try: print(thing.speak()) except AttributeError: print(f"{type(thing).name} cannot speak")

make_it_speak(Rock()) # "Rock cannot speak"

def make_it_speak(thing): if hasattr(thing, 'speak'): print(thing.speak()) else: print(f"{type(thing).name} cannot speak")

def make_it_speak(thing): speak_method = getattr(thing, 'speak', None) if callable(speak_method): print(speak_method())

else: print(f"{type(thing).name} cannot speak")

=== Handling Duck Typing Failures

What happens when duck typing fails? The object doesn't have the method you expected:

[source,python]

You have options for handling this:

==== Option 1: EAFP (Easier to Ask Forgiveness than Permission)

This is the Pythonic way:

[source,python]

==== Option 2: LBYL (Look Before You Leap)

Check first using `hasattr()`:

[source,python]

==== Option 3: Use callable() for Methods

[source,python]

class DataSource: """Base class for data sources using properties and meant for duck typing."""

def __init__(self, name):
 self._name = name
 self._data = []

@property
def name(self):
 return self._name

@property
def record_count(self):
 """Calculated property."""
 return len(self._data)

def read(self):
 """Duck typing target: anything with read() can be a data source."""
 raise NotImplementedError

[NOTE]
====
EAFP (try/except) is generally preferred in Python because:

* It's often faster when the method usually exists
* It's more Pythonic
* It handles edge cases better
====

=== Duck Typing Summary

[cols="1,3"]
|===
|Concept |Description

|**Core Idea**
|Care about behavior, not type

|**Benefit**
|Flexible, loosely-coupled code

|**Risk**
|Runtime errors if object lacks expected method

|**Best Practice**
|Use try/except (EAFP) for graceful handling

|**Common Uses**
|Iteration, file operations, context managers
|===

== Putting It All Together

Let's build a small example that combines all three concepts:

[source,python]

class CSVSource(DataSource): """Reads data from a CSV-like format."""

def __init__(self, name, raw_text):
 super().__init__(name) # Call parent's __init__
 self._raw_text = raw_text

def read(self):
 """Parse CSV and return records."""
 lines = self._raw_text.strip().split('\n')
 headers = lines[0].split(',')

self._data = []
for line in lines[1:]:
 values = line.split(',')
 record = dict(zip(headers, values))
 self._data.append(record)

return self._data

class JSONSource(DataSource): """Reads data from JSON format."""

def __init__(self, name, json_data):
 super().__init__(name)
 self._json_data = json_data

def read(self):
 """Parse JSON and return records."""
 import json
 self._data = json.loads(self._json_data)
 return self._data

def analyze_data(source): """ Works with ANY object that has read() and record_count. This is duck typing in action. """ try:

data = source.read() print(f"Source: {source.name}") print(f"Records: {source.record_count}") print(f"First record: {data[0]

if data else 'No data'}") print() except AttributeError as e: print(f"Invalid data source: {e}")

Usage

csv_data = """name,age,city Alice,30,New York Bob,25,Boston Charlie,35,Chicago"""

json_data = '[{"name": "Diana", "score": 95}, {"name": "Eve", "score": 87}]'

csv_source = CSVSource("Employee CSV", csv_data) json_source = JSONSource("Scores JSON", json_data)

Both work with the same function thanks to duck typing

analyze_data(csv_source) # Source: Employee CSV # Records: 3 # First record: {'name': 'Alice', 'age': '30', 'city': 'New York'}

analyze_data(json_source) # Source: Scores JSON # Records: 2= Python OOP: The Missing Pieces :toc: :toc-placement: left

:toclevels: 3 :sectnums: :source-highlighter: pygments

1. Introduction

So you’ve learned about classes, objects, the three pillars of OOP, and even touched on composition vs inheritance. That’s a

solid foundation. But Python has a few more tricks up its sleeve that make working with objects feel natural and

"Pythonic."

Let’s dive into three topics that often get glossed over but are essential for writing clean, professional Python code.

2. The @property Decorator

Remember encapsulation? We learned that we can make attributes "private" using double underscores to protect them

from outside interference. But here’s the thing: sometimes you do need controlled access to those private attributes.

In languages like Java, you’d write explicit getX() and setX() methods. It works, but it’s verbose and clunky:

Python offers a more elegant solution: the @property decorator. It lets you define methods that look like simple attribute

access but actually run your custom code behind the scenes.

The "Java-style" approach (works, but not Pythonic)
class Circle:
 def __init__(self, radius):
 self.__radius = radius

 def get_radius(self):
 return self.__radius

 def set_radius(self, value):
 if value > 0:
 self.__radius = value
 else:
 raise ValueError("Radius must be positive")

Usage feels awkward
c = Circle(5)
print(c.get_radius()) # 5
c.set_radius(10)

PYTHON

2.1. Creating a Read-Only Property

Notice how we access radius and area without parentheses. From the outside, they look like regular attributes. But

behind the scenes, Python is calling our methods.

2.2. Adding a Setter: Controlled Write Access

What if we want to allow changing the radius, but with validation? We add a setter using @property_name.setter :

class Circle:
 def __init__(self, radius):
 self._radius = radius # Single underscore: "protected" by convention

 @property
 def radius(self):
 """The radius property (read-only for now)."""
 return self._radius

 @property
 def area(self):
 """Calculated property — no stored value needed."""
 return 3.14159 * self._radius ** 2

Usage feels natural
c = Circle(5)
print(c.radius) # 5 — looks like an attribute, but it's a method!
print(c.area) # 78.53975 — calculated on the fly

PYTHON

class Circle:
 def __init__(self, radius):
 self._radius = None # Will be set by the setter
 self.radius = radius # Use the setter for validation

 @property
 def radius(self):
 """Get the radius."""
 return self._radius

 @radius.setter
 def radius(self, value):
 """Set the radius with validation."""
 if value <= 0:
 raise ValueError("Radius must be positive")
 self._radius = value

 @property
 def area(self):
 """Calculated property."""
 return 3.14159 * self._radius ** 2

Now we have validated attribute access
c = Circle(5)
print(c.radius) # 5

c.radius = 10 # Works fine
print(c.radius) # 10

c.radius = -5 # Raises ValueError: Radius must be positive

PYTHON

2.3. The Deleter: Cleaning Up

For completeness, you can also define what happens when someone tries to delete the attribute:

NOTE The deleter is rarely needed, but it’s available when you need it.

2.4. Why Use Properties?

Properties offer several advantages:

Clean interface: Users of your class interact with simple attributes, not method calls

Validation: You can enforce rules when values are set

Calculated attributes: Derive values on-the-fly without storing them

Backward compatibility: You can start with a simple attribute and later add a property without changing the interface

@radius.deleter
def radius(self):
 """Handle deletion of radius."""
 print("Deleting radius...")
 self._radius = None

Usage
del c.radius # Prints: Deleting radius...

PYTHON

2.5. Complete Example: Temperature Converter

Both celsius and fahrenheit feel like simple attributes, but they’re actually properties with logic behind them. The

user doesn’t need to know or care about the implementation.

3. Understanding super()

We touched on inheritance and mentioned super() , but let’s really dig into what it does and why it matters.

When a child class inherits from a parent, sometimes you want to extend the parent’s behavior rather than completely

replace it. That’s where super() comes in.

3.1. The Problem: Repeating Yourself

Imagine you’re building on the Animal example:

class Temperature:
 """A temperature that can be accessed in Celsius or Fahrenheit."""

 def __init__(self, celsius=0):
 self._celsius = celsius

 @property
 def celsius(self):
 """Temperature in Celsius."""
 return self._celsius

 @celsius.setter
 def celsius(self, value):
 if value < -273.15:
 raise ValueError("Temperature cannot be below absolute zero")
 self._celsius = value

 @property
 def fahrenheit(self):
 """Temperature in Fahrenheit (calculated)."""
 return (self._celsius * 9/5) + 32

 @fahrenheit.setter
 def fahrenheit(self, value):
 """Set temperature using Fahrenheit."""
 celsius_value = (value - 32) * 5/9
 if celsius_value < -273.15:
 raise ValueError("Temperature cannot be below absolute zero")
 self._celsius = celsius_value

 def __repr__(self):
 return f"Temperature({self._celsius}°C / {self.fahrenheit}°F)"

Usage
temp = Temperature(25)
print(temp) # Temperature(25°C / 77.0°F)

temp.fahrenheit = 100
print(temp) # Temperature(37.77...°C / 100°F)

print(temp.celsius) # 37.77...
print(temp.fahrenheit) # 100

PYTHON

This works, but it violates DRY (Don’t Repeat Yourself). If Animal.init changes, you’d have to update every child class.

That’s a maintenance nightmare.

class Animal:
 def __init__(self, name, age):
 self.name = name
 self.age = age
 self.is_alive = True

 def speak(self):
 raise NotImplementedError("Subclass must implement")

class Dog(Animal):
 def __init__(self, name, age, breed):
 # Without super(), you'd have to repeat the parent's work:
 self.name = name # Duplicated!
 self.age = age # Duplicated!
 self.is_alive = True # Duplicated!
 self.breed = breed # Only this is new

 def speak(self):
 return f"{self.name} says Woof!"

PYTHON

3.2. The Solution: Using super()

3.3. What super() Actually Returns

When you call super() , Python returns a special proxy object that delegates method calls to the parent class. It’s

essentially saying: "Give me a way to call methods from my parent."

This is equivalent to the older, more explicit syntax:

class Animal:
 def __init__(self, name, age):
 self.name = name
 self.age = age
 self.is_alive = True

 def speak(self):
 raise NotImplementedError("Subclass must implement")

 def describe(self):
 return f"{self.name} is {self.age} years old"

class Dog(Animal):
 def __init__(self, name, age, breed):
 super().__init__(name, age) # Call the parent's __init__
 self.breed = breed # Add dog-specific attribute

 def speak(self):
 return f"{self.name} says Woof!"

 def describe(self):
 # Extend the parent's describe method
 base_description = super().describe()
 return f"{base_description} and is a {self.breed}"

Usage
rex = Dog("Rex", 5, "German Shepherd")

print(rex.name) # Rex (set by parent)
print(rex.age) # 5 (set by parent)
print(rex.is_alive) # True (set by parent)
print(rex.breed) # German Shepherd (set by child)

print(rex.speak()) # Rex says Woof!
print(rex.describe()) # Rex is 5 years old and is a German Shepherd

PYTHON

super().__init__(name, age)
PYTHON

Animal.__init__(self, name, age)
PYTHON

TIP

The super() syntax is preferred because:

It’s cleaner and more readable

It works correctly with multiple inheritance (more advanced topic)

If you rename the parent class, you don’t have to update the child

3.4. Extending Methods Beyond init

You can use super() in any method, not just init :

class Animal:
 def eat(self, food):
 print(f"{self.name} is eating {food}")
 self.hunger = 0

class Dog(Animal):
 def eat(self, food):
 if food == "chocolate":
 print(f"No! Chocolate is toxic for dogs!")
 return
 super().eat(food) # Call parent's eat method
 print(f"{self.name} wags tail happily")

rex = Dog("Rex", 5, "German Shepherd")
rex.hunger = 100

rex.eat("chocolate")
Output: No! Chocolate is toxic for dogs!

rex.eat("kibble")
Output: Rex is eating kibble
Rex wags tail happily

PYTHON

3.5. Practical Example: Building a User System

Each level builds on the previous one, and super() makes it seamless.

class User:
 """Base user class."""

 def __init__(self, username, email):
 self.username = username
 self.email = email
 self.is_active = True
 self.created_at = "2025-01-01" # Simplified

 def get_permissions(self):
 return ["read"]

 def __repr__(self):
 return f"User({self.username})"

class AdminUser(User):
 """Admin with elevated permissions."""

 def __init__(self, username, email, admin_level=1):
 super().__init__(username, email) # Set up base user stuff
 self.admin_level = admin_level

 def get_permissions(self):
 # Start with base permissions, then add more
 base_permissions = super().get_permissions()
 admin_permissions = ["write", "delete"]
 if self.admin_level >= 2:
 admin_permissions.append("manage_users")
 return base_permissions + admin_permissions

 def __repr__(self):
 return f"AdminUser({self.username}, level={self.admin_level})"

class SuperAdmin(AdminUser):
 """Super admin with all permissions."""

 def __init__(self, username, email):
 super().__init__(username, email, admin_level=3)

 def get_permissions(self):
 return super().get_permissions() + ["system_config", "view_logs"]

Usage
regular = User("alice", "alice@example.com")
admin = AdminUser("bob", "bob@example.com", admin_level=2)
super_admin = SuperAdmin("charlie", "charlie@example.com")

print(regular.get_permissions())
['read']

print(admin.get_permissions())
['read', 'write', 'delete', 'manage_users']

print(super_admin.get_permissions())
['read', 'write', 'delete', 'manage_users', 'system_config', 'view_logs']

PYTHON

““

4. Duck Typing

The presentation mentioned duck typing briefly, but it deserves a deeper look because it’s fundamental to how Python

thinks about objects.

4.1. The Philosophy

The name comes from the saying:

If it walks like a duck and quacks like a duck, then it probably is a duck.

In Python terms: we don’t care what type an object is, only what it can do.

Unlike languages like Java or C++, Python doesn’t require objects to inherit from a common parent or implement a formal

interface. If an object has the method you need, you can use it.

4.2. A Simple Example

The make_it_speak function works with any object that has a speak method. It doesn’t check types, it just tries to use the

method.

4.3. Duck Typing vs Traditional Polymorphism

With traditional inheritance-based polymorphism, you’d write:

class Duck:
 def speak(self):
 return "Quack!"

 def swim(self):
 return "Duck is swimming"

class Person:
 def speak(self):
 return "Hello!"

 def swim(self):
 return "Person is swimming"

class Robot:
 def speak(self):
 return "Beep boop!"

 def swim(self):
 return "Robot is short-circuiting!"

def make_it_speak(thing):
 """This function doesn't care about the type of 'thing'."""
 print(thing.speak())

def pool_party(participants):
 """Everyone goes swimming!"""
 for participant in participants:
 print(participant.swim())

None of these classes inherit from each other
But they all work because they have the same methods
duck = Duck()
person = Person()
robot = Robot()

make_it_speak(duck) # Quack!
make_it_speak(person) # Hello!
make_it_speak(robot) # Beep boop!

pool_party([duck, person, robot])
Duck is swimming
Person is swimming
Robot is short-circuiting!

PYTHON

This works, but Python’s duck typing lets you skip the formal hierarchy entirely. Your classes don’t need to know about

each other or share a parent.

4.4. Real-World Duck Typing: File-Like Objects

Python’s standard library uses duck typing extensively. Consider reading data:

The process_data function doesn’t check if it received a "real" file. It just needs something with a read() method.

4.5. Duck Typing with Iteration

You’ve been using duck typing since Chapter 2 without realizing it:

class Speakable:
 def speak(self):
 raise NotImplementedError

class Duck(Speakable):
 def speak(self):
 return "Quack!"

class Person(Speakable):
 def speak(self):
 return "Hello!"

PYTHON

def process_data(data_source):
 """Process data from anything that has a read() method."""
 content = data_source.read()
 return content.upper()

Works with actual files
with open("myfile.txt") as f:
 result = process_data(f)

Works with StringIO (fake file in memory)
from io import StringIO
fake_file = StringIO("hello world")
result = process_data(fake_file) # "HELLO WORLD"

Works with BytesIO
from io import BytesIO
byte_file = BytesIO(b"hello world")
(would need .decode() but you get the idea)

PYTHON

def print_all(items):
 """Print each item. Works with anything iterable."""
 for item in items:
 print(item)

All of these work because they're all "iterable"
print_all([1, 2, 3]) # List
print_all((1, 2, 3)) # Tuple
print_all({1, 2, 3}) # Set
print_all("abc") # String
print_all(range(3)) # Range
print_all({"a": 1, "b": 2}) # Dict (iterates keys)

PYTHON

The for loop doesn’t check types. It just needs an object that supports iteration (has iter method).

4.6. Making Your Classes Duck-Type Friendly

Want your custom class to work with for loops? Just implement the right methods:

4.7. Handling Duck Typing Failures

What happens when duck typing fails? The object doesn’t have the method you expected:

You have options for handling this:

4.7.1. Option 1: EAFP (Easier to Ask Forgiveness than Permission)

This is the Pythonic way:

class Countdown:
 """A countdown that can be iterated."""

 def __init__(self, start):
 self.start = start

 def __iter__(self):
 """Make this class iterable."""
 self.current = self.start
 return self

 def __next__(self):
 """Return the next value."""
 if self.current < 0:
 raise StopIteration
 value = self.current
 self.current -= 1
 return value

Now it works with for loops!
for num in Countdown(5):
 print(num)
Output: 5, 4, 3, 2, 1, 0

And with list()
numbers = list(Countdown(3)) # [3, 2, 1, 0]

PYTHON

class Rock:
 pass # Rocks don't speak

def make_it_speak(thing):
 print(thing.speak())

rock = Rock()
make_it_speak(rock) # AttributeError: 'Rock' object has no attribute 'speak'

PYTHON

4.7.2. Option 2: LBYL (Look Before You Leap)

Check first using hasattr() :

4.7.3. Option 3: Use callable() for Methods

NOTE

EAFP (try/except) is generally preferred in Python because:

It’s often faster when the method usually exists

It’s more Pythonic

It handles edge cases better

4.8. Duck Typing Summary

Concept Description

Core Idea Care about behavior, not type

Benefit Flexible, loosely-coupled code

Risk Runtime errors if object lacks expected method

Best Practice Use try/except (EAFP) for graceful handling

Common Uses Iteration, file operations, context managers

5. Putting It All Together

Let’s build a small example that combines all three concepts:

def make_it_speak(thing):
 try:
 print(thing.speak())
 except AttributeError:
 print(f"{type(thing).__name__} cannot speak")

make_it_speak(Rock()) # "Rock cannot speak"

PYTHON

def make_it_speak(thing):
 if hasattr(thing, 'speak'):
 print(thing.speak())
 else:
 print(f"{type(thing).__name__} cannot speak")

PYTHON

def make_it_speak(thing):
 speak_method = getattr(thing, 'speak', None)
 if callable(speak_method):
 print(speak_method())
 else:
 print(f"{type(thing).__name__} cannot speak")

PYTHON

class DataSource:
 """Base class for data sources using properties and meant for duck typing."""

 def __init__(self, name):
 self._name = name
 self._data = []

 @property
 def name(self):
 return self._name

 @property
 def record_count(self):
 """Calculated property."""
 return len(self._data)

 def read(self):
 """Duck typing target: anything with read() can be a data source."""
 raise NotImplementedError

class CSVSource(DataSource):
 """Reads data from a CSV-like format."""

 def __init__(self, name, raw_text):
 super().__init__(name) # Call parent's __init__
 self._raw_text = raw_text

 def read(self):
 """Parse CSV and return records."""
 lines = self._raw_text.strip().split('\n')
 headers = lines[0].split(',')

 self._data = []
 for line in lines[1:]:
 values = line.split(',')
 record = dict(zip(headers, values))
 self._data.append(record)

 return self._data

class JSONSource(DataSource):
 """Reads data from JSON format."""

 def __init__(self, name, json_data):
 super().__init__(name)
 self._json_data = json_data

 def read(self):
 """Parse JSON and return records."""
 import json
 self._data = json.loads(self._json_data)
 return self._data

def analyze_data(source):
 """
 Works with ANY object that has read() and record_count.
 This is duck typing in action.
 """
 try:
 data = source.read()

PYTHON

6. Summary

In this section, you learned:

@property lets you create attributes with built-in logic — validation, calculation, or transformation — while keeping a

clean interface

super() is your tool for building on parent class functionality without repeating yourself. Use it in init and any

other method you want to extend

Duck typing is Python’s philosophy of caring about what an object can do, not what it is. Write functions that expect

behaviors (methods), not specific types

These three concepts will make your Python code more Pythonic, maintainable, and flexible. They’re the difference

between code that merely works and code that feels natural to write and read.

7. Practice Exercises

1. Create a BankAccount class with a balance property that prevents negative balances. Add a @property for

is_overdrawn that returns True if balance is zero.

2. Build a Vehicle base class with make , model , and year . Create Car and Motorcycle child classes that use

super() to initialize the parent and add their own attributes (num_doors for Car, has_sidecar for Motorcycle).

3. Write a function get_length(thing) that uses duck typing to return the length of any object. It should work with

strings, lists, dictionaries, and any custom class that implements len . Handle objects that don’t have a length

gracefully.

 print(f"Source: {source.name}")
 print(f"Records: {source.record_count}")
 print(f"First record: {data[0] if data else 'No data'}")
 print()
 except AttributeError as e:
 print(f"Invalid data source: {e}")

Usage
csv_data = """name,age,city
Alice,30,New York
Bob,25,Boston
Charlie,35,Chicago"""

json_data = '[{"name": "Diana", "score": 95}, {"name": "Eve", "score": 87}]'

csv_source = CSVSource("Employee CSV", csv_data)
json_source = JSONSource("Scores JSON", json_data)

Both work with the same function thanks to duck typing
analyze_data(csv_source)
Source: Employee CSV
Records: 3
First record: {'name': 'Alice', 'age': '30', 'city': 'New York'}

analyze_data(json_source)
Source: Scores JSON
Records: 2
First record: {'name': 'Diana', 'score': 95}

4. Create a Rectangle class with width and height properties that validate positive values. Add calculated properties

for area and perimeter . Include a @property setter that allows setting area by adjusting the width while keeping

the aspect ratio.

5. Build a simple plugin system using duck typing. Create a PluginManager that accepts any object with activate()

and deactivate() methods. Test it with different "plugin" classes that don’t share a common parent. # First record:

{'name': 'Diana', 'score': 95}

== Summary

In this section, you learned:

* **`@property`** lets you create attributes with built-in logic — validation, calculation, or transformation —
while keeping a clean interface
* **`super()`** is your tool for building on parent class functionality without repeating yourself. Use it in
`__init__` and any other method you want to extend
* **Duck typing** is Python's philosophy of caring about what an object can _do_, not what it _is_. Write
functions that expect behaviors (methods), not specific types

These three concepts will make your Python code more Pythonic, maintainable, and flexible. They're the difference
between code that merely works and code that feels natural to write and read.

== Practice Exercises

1. Create a `BankAccount` class with a `balance` property that prevents negative balances. Add a `@property` for
`is_overdrawn` that returns `True` if balance is zero.

2. Build a `Vehicle` base class with `make`, `model`, and `year`. Create `Car` and `Motorcycle` child classes that
use `super()` to initialize the parent and add their own attributes (`num_doors` for Car, `has_sidecar` for
Motorcycle).

3. Write a function `get_length(thing)` that uses duck typing to return the length of any object. It should work
with strings, lists, dictionaries, and any custom class that implements `__len__`. Handle objects that don't have
a length gracefully.

4. Create a `Rectangle` class with `width` and `height` properties that validate positive values. Add calculated
properties for `area` and `perimeter`. Include a `@property` setter that allows setting `area` by adjusting the
width while keeping the aspect ratio.

5. Build a simple plugin system using duck typing. Create a `PluginManager` that accepts any object with
`activate()` and `deactivate()` methods. Test it with different "plugin" classes that don't share a common parent.
 def read(self):
 """Parse CSV and return records."""
 lines = self._raw_text.strip().split('\n')
 headers = lines[0].split(',')

 self._data = []
 for line in lines[1:]:
 values = line.split(',')
 record = dict(zip(headers, values))
 self._data.append(record)

 return self._data

class JSONSource(DataSource):
 """Reads data from JSON format."""

 def __init__(self, name, json_data):
 super().__init__(name)
 self._json_data = json_data

 def read(self):
 """Parse JSON and return records."""
 import json
 self._data = json.loads(self._json_data)
 return self._data

def analyze_data(source):
 """

8. Summary

In this section, you learned:

@property lets you create attributes with built-in logic — validation, calculation, or transformation — while keeping a

clean interface

super() is your tool for building on parent class functionality without repeating yourself. Use it in init and any

other method you want to extend

Duck typing is Python’s philosophy of caring about what an object can do, not what it is. Write functions that expect

behaviors (methods), not specific types

These three concepts will make your Python code more Pythonic, maintainable, and flexible. They’re the difference

between code that merely works and code that feels natural to write and read.

9. Practice Exercises

1. Create a BankAccount class with a balance property that prevents negative balances. Add a @property for

is_overdrawn that returns True if balance is zero.

2. Build a Vehicle base class with make , model , and year . Create Car and Motorcycle child classes that use

super() to initialize the parent and add their own attributes (num_doors for Car, has_sidecar for Motorcycle).

 Works with ANY object that has read() and record_count.
 This is duck typing in action.
 """
 try:
 data = source.read()
 print(f"Source: {source.name}")
 print(f"Records: {source.record_count}")
 print(f"First record: {data[0] if data else 'No data'}")
 print()
 except AttributeError as e:
 print(f"Invalid data source: {e}")

Usage
csv_data = """name,age,city
Alice,30,New York
Bob,25,Boston
Charlie,35,Chicago"""

json_data = '[{"name": "Diana", "score": 95}, {"name": "Eve", "score": 87}]'

csv_source = CSVSource("Employee CSV", csv_data)
json_source = JSONSource("Scores JSON", json_data)

Both work with the same function thanks to duck typing
analyze_data(csv_source)
Source: Employee CSV
Records: 3
First record: {'name': 'Alice', 'age': '30', 'city': 'New York'}

analyze_data(json_source)
Source: Scores JSON
Records: 2
First record: {'name': 'Diana', 'score': 95}

3. Write a function get_length(thing) that uses duck typing to return the length of any object. It should work with

strings, lists, dictionaries, and any custom class that implements len . Handle objects that don’t have a length

gracefully.

4. Create a Rectangle class with width and height properties that validate positive values. Add calculated properties

for area and perimeter . Include a @property setter that allows setting area by adjusting the width while keeping

the aspect ratio.

5. Build a simple plugin system using duck typing. Create a PluginManager that accepts any object with activate()
and deactivate() methods. Test it with different "plugin" classes that don’t share a common parent.

Last updated 2025-11-30 14:46:26 +0800

