The Object-
Oriented
Paradigm

From Data Structures to
Digital Models

A guide to structuring your code to mirror the
real world, creating software that is more
intuitive, manageable, and powerful.

&1 NotebookLM

The Shift from Process to Object

A World of Functions

Function

Difficult
to modify

Global state

Function
D

Hard to

debug

Function

Function
E

A World of Objects

Product

Data and behavior Clear Reusable
bundled boundaries components

Procedural programming focuses on a sequence of actions. Object-Oriented Programming focuses on creating
self-contained objects that model real-world entities, bundling data and the functions that operate on that data together.

&1 NotebookLM

The Core Idea: Blueprints and the

Buildings They Create

The Blueprint (Class)

A class is a template for creating objects. It defines a set of
attributes (data) and methods (behaviors) that the created
objects will have.

—— The Blueprint

The blueprint for all bank accounts
class BankAccount: €
The constructor: called when a new object 1s created
— def __init__(self, owner, balance=0):
self.owner = owner # Instance attribute
self.balance = balance # Instance attribute

L An Attribute (Data)

— The Constructor

The Buildings (Objects)

An object (or instance) is a concrete occurrence of a class.
You can create many unique objects from a single class
blueprint.

Creating two unique "buildings" from the blueprint
- =-=>» accountl
account2

BankAccount("Alice", 1600)
BankAccount("Bob", 500)

==
—
=
—_—

accountl (Owner: Alice, account2 (Owner: Bob,
Balance: 1000) Balance: 500)

&1 NotebookLM

Bringing Objects to Life with Methods

Methods are functions that belong to a class. They define the behaviors of an object,
allowing it to perform actions and interact with its own data.

class BankAccount:
def __init_ (self, owner, balance=0):
self.owner = owner
self.balance = balance

A method to add funds
def deposit(self, amount):
self.balance += amount
print(f"Deposited {amount}. New balance: {self.balance}")

A method to remove funds
def withdraw(self, amount):
1f amount == self.balance:
self.balance —= amount
- print(f"wWithdrew {amount}. New balance: {self.balance}")
else:
print("Insufficient funds.")

A method that returns a value
def get_balance(self):
return self.balance

How It Works

The "self Parameter Usage Example

The sel.f‘ parameter is a refereqce to the current instance nf.the # Calling methods on an object

class. It is used to access the attributes and methods of the object my_account = BankAccount(“Charlie", 2600)

itSEIf(E.g”.‘self.balanﬂe‘). my_account.deposit(50) # Output: Deposited 58. New balance: 258

&1 NotebookLM

Pillar 1: Encapsulation - The Protective Shell

/\
m @ Public

o v — Interface

Hidden
Implementation

Encapsulation protects an object’s internal state from outside interference. It hides complex implementation
details behind a clean public interface, making your code safer and easier to maintain.

class User:
def __init__(self, username, password): :)
self.username = username Private Attributes
self.__password = password # __ denotes a private attribute
def check_password(self, attempt): In Python, the __double_underscore prefix triggers
Public method to safely interact with private data ‘name mang”ng'_ This makes it harder for code
return self.__password == attempt 2 . .
outside the class to accidentally access or modify
Using the class the attribute, effectively creating a private variable.

user = User("admin", "s3cr3t_p@ss")
print(user.__password) -> This would raise an AttributeError!
print(user.check_password("wrong_pass")) -> False

&1 NotebookLM

Pillar 2: Inheritance - Building on Existing Work

Inheritance allows a new class (child/derived) to take on the attributes and methods of an
existing class (parent/base). This promotes code reuse and creates a logical hierarchy.

Parent Class Code Block Child Class Code Block
I\I1I"IEII class Animal: class Dog(Animal): # Dog "is-a" Animal
method: “speak() def speak(self): return f"{self.name} says

raise NotImplementedError(Woof ! "
"Subclass must implement")

’
Key Terms
» Parent/Base Class: The class being inherited from (Animal).
Dog ‘Cat * Child/Derived Class: The class that inherits (Dog).
e : R t * Method Overriding: Providing a specific implementation in the|
overicesRspeaky overrides ‘speak() child class for a method already defined in the parent
adds method ‘fetch()’ adds method "purr()’ X : ; Y P '
e ‘super()’: A function to call methods from the parent class.
N v

&1 NotebookLM

Pillar 3: Polymorphism - One Interface, Many Forms

From the Greek for "many shapes," polymorphism is the
ability of different objects to respond to the same method call

in different ways. It allows for writing flexible, generic code

that can work with objects of various types.

for shape in shapes:
shape.calculate_area()

class ShEpEI
def area(self): raise NotImplementedError

class Rectangle(Shape):
def __init_ (self, w, h): self.w, self.h = w, h
def area(self): return self.w * self.h

class Circle(Shape):
def __init__(self, r): self.r = p
def area(self): return 3.14 % self.r ##% 2

Polymorphism 1n action

shapes = [Rectangle(5, 18), Circle(7)]

for shape in shapes:
We don't need to know the specific type of shape,
just that it has an .area() method.
print(f"Area: {shape.area()}")

——

4 I I .y

.
|
I

|
|
I
1
|
|
|
I
|
1
|
|
I
|
1
I
|
I

>
N
(D
o
I
"
P

» Area =Tir?

—— Area= Y%2bh

o -

h---_—---—--_--——--_*

S)

Duck Typing in Python

If it walks like a duck and quacks like a duck, it's a
duck. We care about what an object can do (its
methods), not what it is* (its class).

&1 NotebookLM

Integrating with Python: Special (Dunder) Methods

Make your objects feel native.

Python has a set of special methods, often called “magic” or
“dunder” (double underscore) methods, that you can define to give
your objects built-in behavior. This is called operator overloading.

weod operoiruncion owsiion |
Operator/Function | Description

class Vector:

init(self, ..) MyClass() el 2l e def _init__(self, x, y):
(constructor)
self.x, self.y = x, vy
. User-friendly string def __repr__(self):
i eE str rint : .
—str_() O, 0 representation return f"Vector({self.x}, {self.y})"
A e Developer-friendly —> def __add__(self, other):
nRepr-— P representation return Vector(self.x + other.x, self.y + other.y)
__len__(self) len() Get the length of the object vl = Vector(2, 3)
v2 = Vector(5, 1)
_add__(self, other) + Defines addition — v3 = vi[@)v2 # This works because of _add__!
__eq__(self, other) == Defines equality comparison print(v3) # Output: Vector(7, 4)

&1 NotebookLM

Advanced Design: Class and Static Methods

I Object /_, Class /, /_,

b el cls self/cls

Instance Method: Operates on an Class Method: Operates on the Static Method: A utility function

instance's state. class; can be used as an alternative related to the class, but doesn'’t
constructor. need instance or class state.

A 'Date Class with a Factory Method

class Date:
def __init__(self, day, month, year):
self.day, self.month, self.year = day, month, year

@classmethod

def from_string(cls, date_string): # A "factory" method
Parses "dd-mm-yyyy"
day, month, year = map(int, date_string.split('-'))
return cls(day, month, year) # Creates an instance

@staticmethod

def is_valid_date(date_string):
A utility function that doesn't need cls or self
... validation logic ...
return True

When to Use Which

* Instance Method: The default. Needs access to an
object’s data ("self").

e Class Method: To create factory methods that produce
instances of the class in alternative ways.

e Static Method: For utility functions that have a logical
connection to the class but don’t depend on class or
instance state.

&1 NotebookLM

The Architect’s Choice: Inheritance (‘Is-A’) vs. Composition (‘Has-A’)

Inheritance (Is-A)

Establishes a hierarchical, parent-child relationship.
A "SportsCar isa Car .
Pro: Reuses code directly from the parent.

Con: Creates tight coupling. Changes in the parent
can break the child.

B

¥

SportsCar

Composition (Has-A)
Builds complex objects by combining simpler ones.
A "Car hasan Engine .

Pro: More flexible and loosely coupled. You can swap
out component parts.

Con: Can require more boilerplate code to wire
components together.

Car

Engine

Prefer composition over inheritance. It often leads to more flexible, scalable, and understandable designs.
Start by asking if the relationship is ‘is-a’ or ‘has-a’.

& NotebookLM

Capstone Project: Building a Library Management System
Part 1: Defining the Core Entities

Goal: To model a simple library system that manages a collection of books and a list of members who can
borrow them, demonstrating all major OOP principles.

The Book Class The Member Class
class Book: class Member:
def __init__(self, title, author, isbn): def __init__(self, name, member_id):
self.title = title self.name = name
self.author = author self.member_id = member_id
self._isbn = isbn # Protected attribute self.borrowed_books = [] # A list of Book
self.is_checked_out = False objects
def __repr__(self): # Dunder method for clear def __repr__(self):
representation return f"Member: {self.name} (ID:
return f"'{self.title}' by {self.author}" {self.member_id})"

We begin by creating our 'blueprints’. The "Book™ and "Member ' classes encapsulate the data and state for
the fundamental objects in our system.

& NotebooklLM

Capstone Project: Building a Library Management System
Part 2: The Library as an Orchestrator

The “Library" class doesn’t inherit from “Book™ or "Member". Instead, it has a collection of them. It acts as the central
hub, providing a public interface to manage the system’s core logic while hiding the implementation details.

The "Library™ Class (Partial)

class Library:
def __init__(self):

self._books = {} # Using dict for fast lookup by ISBN l“mnd_buuk{)‘ method
self._members = {}

“Library” Object

def add_book(self, book):
self._books[book._isbn] = book

def add_member(self, member):
self._members[member.member_id] = member

def lend_book(self, isbn, member_id):
book = self._books.get(isbn)
member = self._members.get(member_id)

!
E A
e

"_books’ "_members’

print(f"Lent '{book.title}' to {member.name}") collection collection
else:
print("Lending failed.")

1f book and member and not book.is_checked_out:
book.1s_checked_out = True
member.borrowed_books.append(book)

&1 NotebookLM

Capstone Project: Building a Library Management System
Part 3: Extending the System with Inheritance

The true power of an OOP design is its extensibility. What if we want to add digital books with different lending
rules? With inheritance, we can create a specialized DigitalBook ™ class without changing our existing Book" or

"Library code.

class DigitalBook(Book): # DigitalBook "is-a" Book < ~
def init_(self, title, author, isbn, file format):

super().__init__ (title, author, isbn) # Call parent constructor

self.file_format = file_format

We could override lending logic here if needed,
but for now, it inherits the base behavior.

Polymorphism in Action

Our "Library’ class's methods can work with 'Book™ objects and "DigitalBook" objects ir
they share the same interface. This is polymorphism.

library = Library()
physical_book = Book("The Hobbit", "J.R.R. Tolkien", "123")
digital_book = DigitalBook("The Silmarillion", "J.R.R. Tolkien", "456", "EPUB")

terchangeably, as long as

library.add_book(physical_book)
library.add_book(digital_book) # Works seamlessly!

&1 NotebookLM

The Object-Oriented Mindset

Model the Real World AT = Bundle Data and Behavior
Think in terms of objects, their @ (Encapsulation)

properties, and their behaviors. Keep related data and the functions
Your code structure should reflect that operate on it together in one place.

the problem domain. Protect it from the outside world.

Build on What You Have Write Flexible Code
(Inheritance) (Polymorphism & Composition)
T Don't reinvent the wheel. Extend Design components that can be
:I existing code to create specialized swapped and interchanged. Depend
versions. on interfaces, not on concrete

implementations.

Mastering these principles allows you to build systems that are not just
functional, but also resilient, scalable, and a pleasure to maintain.

& NotebookLM

