Python Architecture Pillars:
Supplementary Guide

Table of Contents

Introduction
Understanding Variable Scope in Functions
The LEGB Rule
Practical Example
The global and nonlocal Keywords
Why This Matters for Functions
Mutable vs Immutable Default Arguments
The Problem
Why This Happens
The Solution
Rule of Thumb
The Exception Hierarchy
Python’s Exception Tree (Simplified)
Why the Hierarchy Matters
Best Practice: Be Specific
Never Catch BaseException
File Encodings Explained
What is Encoding?
Common Encodings
Always Specify Encoding
Handling Encoding Errors
Detecting Unknown Encodings
Understanding Context Managers Beyond Files
What Context Managers Do
Common Built-in Context Managers
Creating Your Own Context Manager
Import System Deep Dive
How Python Finds Modules
Import Styles and When to Use Them
Relative vs Absolute Imports
The init.py File
Docstrings: Documenting Your Code
What is a Docstring?
Basic Format

© © 00 00 00 0 N N N0 o0 oo o0 O 1 U1 U1 U1 bl bk R kW NN NN

R R))
N = IR =

Accessing Docstrings 11

Popular Docstring Styles 11
Practical Exception Handling Patterns 12
Pattern 1: Retry Logic 12
Pattern 2: Exception Chaining 12
Pattern 3: Logging Exceptions 13
Pattern 4: Cleanup with Exception Info 13
Summary 13

Introduction

This document provides deeper explanations of foundational concepts that support the four pillars
of Python architecture: Reusability (Functions), Resilience (Exceptions), Persistence (Files), and
Organization (Modules). These topics are essential prerequisites that enhance your understanding
of professional Python development.

Understanding Variable Scope in Functions

The PDF introduces functions but doesn’t explain how Python determines which variables are
accessible where. This concept is critical for avoiding bugs.

The LEGB Rule

Python resolves variable names using the LEGB rule, checking scopes in this order:

1. Local: Variables defined inside the current function
2. Enclosing: Variables in any enclosing functions (for nested functions)
3. Global: Variables defined at the module level

4. Built-in: Python’s pre-defined names like print, len, int
Practical Example

message = "I am global"™ # Global scope

def outer_function():
message = "I am enclosing”" # Enclosing scope

def inner_function():
message = "I am local" # Local scope
print(message) # Prints: "I am local"

inner_function()
print(message) # Prints: "I am enclosing"

outer_function()
print(message) # Prints: "I am global"

The global and nonlocal Keywords

When you need to modify a variable from an outer scope:

counter = 0

def increment():
global counter # Declares intent to modify global variable
counter += 1

increment()
print(counter) # Output: 1

def make_counter():
count = 0

def increment():
nonlocal count # Modifies the enclosing scope's variable
count += 1
return count

return increment

my_counter = make_counter()
print(my_counter()) # Output: 1
print(my_counter()) # Output: 2

Why This Matters for Functions

Understanding scope prevents common bugs:

Common mistake: forgetting that assignment creates a local variable
total = 100

def add_to_total(value):
This creates a NEW local variable, doesn't modify global
total = total + value # UnboundlLocalError!
return total

Correct approach

def add_to_total(value):
global total
total = total + value

return total

Mutable vs Immutable Default Arguments

The PDF covers default parameters but doesn’t address a common pitfall that trips up many Python
developers.

The Problem

def add_item(item, item_list=[]): # Dangerous!
item_list.append(item)
return item_list

print(add_item("apple")) # ['apple']
print(add_item("banana")) # ['apple', 'banana'] - Unexpected!
print(add_item("cherry")) # ['apple', 'banana', 'cherry'] - Bug!

Why This Happens

Default argument values are evaluated once when the function is defined, not each time the
function is called. Mutable objects (lists, dictionaries, sets) retain modifications between calls.

The Solution

Use None as the default and create the mutable object inside the function:

def add_item(item, item_list=None):
if item_list is None:
item_list = [] # Fresh list created each call
item_list.append(item)
return item_list

print(add_item("apple")) # ['apple']
print(add_item("banana")) # ['banana'] - Correct!

Rule of Thumb

Default arguments should always be immutable types:

* 0 Safe: None, numbers, strings, tuples

* 0 Dangerous: lists, dictionaries, sets, custom objects

The Exception Hierarchy

The PDF shows common exceptions but doesn’t explain how they relate to each other.
Understanding the hierarchy helps you write better exception handlers.

Python’s Exception Tree (Simplified)

BaseException
—— SystemExit
—— KeyboardInterrupt
——— GeneratorExit
L—— Exception
—— StopIteration
F—— ArithmeticError
| ——— ZeroDivisionError
| F——— OverflowError
| L—— FloatingPointError
—— LookupError
—— IndexError
L—— KeyError
F——— 0SError
| ——— FileNotFoundError
| ——— PermissionError
| L—— FileExistsError
—— ValueError
—— TypeError

L—— AttributeError

Why the Hierarchy Matters

Catching a parent exception also catches all its children

This catches both IndexError and KeyError
try:

some_operation()
except LookupError as e:

print(f"Item not found: {e}")

Best Practice: Be Specific

Too broad - hides bugs!
try:

value = data[key]
except Exception:

value = default

Better - only catches what you expect
try:

value = data[key]
except KeyError:

value = default

Never Catch BaseException

WRONG - prevents Ctr1+C from stopping your program
try:
while True:
do_work()
except BaseException:
pass

CORRECT - allows KeyboardInterrupt to propagate
try:
while True:
do_work()
except Exception:
handle_error()

File Encodings Explained

The PDF covers file operations but doesn’t address character encoding, which causes many real-
world bugs.

What is Encoding?

Computers store text as numbers. An encoding is the mapping between characters and numbers.
Different encodings use different mappings.

Common Encodings

Encoding Description When to Use

UTF-8 Universal, variable-width, ASCII- Default choice for most applications
compatible

ASCII Original 7-bit encoding, English only = Legacy systems, simple text

Latin-1 (ISO-8859- Western European characters Older web pages, some Windows files

1)

UTF-16 Windows native, uses 2+ bytes per Windows APIs, some legacy systems
character

Always Specify Encoding

Risky - uses system default encoding
with open("data.txt", "r") as f:
content = f.read()

Safe - explicit UTF-8
with open("data.txt", "r", encoding="utf-8") as f:
content = f.read()

Handling Encoding Errors

Strict (default) - raises error on invalid characters

with open("data.txt", "r", encoding="utf-8", errors="strict") as f:

content = f.read()

Replace - substitutes invalid characters with ?

with open("data.txt", "r", encoding="utf-8", errors="replace") as f:

content = f.read()

Ignore - silently skips invalid characters

with open("data.txt", "r", encoding="utf-8", errors="ignore") as f:

content = f.read()

Detecting Unknown Encodings

When you don’t know a file’s encoding:

def read_with_fallback(filepath):
encodings = ["utf-8", "latin-1", "cp1252"]

for encoding in encodings:
try:
with open(filepath, "r", encoding=encoding) as f:
return f.read()
except UnicodeDecodeError:
continue

raise ValueError(f"Could not decode {filepath}")

Understanding Context Managers Beyond
Files

The PDF introduces the with statement for files, but this pattern is far more powerful and widely
applicable.

What Context Managers Do

A context manager guarantees that setup and cleanup code runs, even if errors occur. The pattern
is:

1. Enter: Acquire resource or set up state
2. Execute: Run your code block

3. Exit: Clean up, always runs (even on exceptions)
Common Built-in Context Managers

Database connections

import sqlite3

with sqlite3.connect("database.db") as conn:
cursor = conn.cursor()
cursor.execute("SELECT * FROM users")
Connection automatically closed

Thread locks

import threading

lock = threading.Llock()

with lock:
Only one thread can execute this at a time
shared_resource.modify()

Temporary directory changes

import os

from contextlib import chdir

with chdir("/tmp"):
Working directory is /tmp here
pass

Back to original directory

Creating Your Own Context Manager

Using a class:

class Timer:

def __enter__(self):
import time
self.start = time.time()
return self

def __exit__(self, exc_type, exc_val, exc_tb):
import time
self.elapsed = time.time() - self.start
print(f"Elapsed: {self.elapsed:.2f} seconds")
return False # Don't suppress exceptions

with Timer():
Code to time
sum(range(1000000))

Using the decorator approach (simpler):

from contextlib import contextmanager

@contextmanager

def timer():
import time
start = time.time()
yield # Code in 'with' block runs here
elapsed = time.time() - start
print(f"Elapsed: {elapsed:.2f} seconds")

with timer():
sum(range(1000000))

Import System Deep Dive

The PDF covers basic imports but doesn’t explain how Python finds modules or the different import
styles.

How Python Finds Modules

Python searches these locations in order:

1. The directory containing the input script
2. PYTHONPATH environment variable (if set)

3. Installation-dependent default paths (site-packages)

You can inspect the search path:

import sys

for path in sys.path:
print(path)

Import Styles and When to Use Them

Import entire module - clearest, best for readability
import json
data = json.loads(text)

Import specific items - good for frequently used items
from datetime import datetime, timedelta
now = datetime.now()

Import with alias - useful for long names or conventions
import numpy as np
import pandas as pd

Import all (avoid this!) - pollutes namespace, hides dependencies
from math import * # Which functions came from math?

Relative vs Absolute Imports

In

packages (directories with init.py):

Absolute import - always works, explicit
from mypackage.utils import helper

Relative import - only in packages, shows relationship
from .utils import helper # Same directory
from ..other import something # Parent directory

The init.py File

This file makes a directory a Python package. It can be empty or define what’s exported:

10

mypackage/__init__.py

Make these available when someone imports mypackage
from .core import main_function
from .utils import helper_function

Define what 'from mypackage import *' exports
_all__ = ["main_function", "helper_function"]

Docstrings: Documenting Your Code

The PDF emphasizes descriptive function names but doesn’t cover documentation strings, which
are essential for maintainable code.

What is a Docstring?

A docstring is a string literal that appears as the first statement in a function, class, or module.
Python stores it in the doc attribute.

Basic Format

def calculate_area(length, width):
"""Calculate the area of a rectangle.

Args:
length: The length of the rectangle (positive number).
width: The width of the rectangle (positive number).

Returns:
The area as a float.

Raises:
ValueError: If length or width is not positive.

if length <= @ or width <= 0:
raise ValueError("Dimensions must be positive")
return float(length * width)

Accessing Docstrings

In code
print(calculate_area.__doc__)

In interactive Python
help(calculate_area)

Popular Docstring Styles
Google Style (shown above) - readable, popular in open source

NumPy Style - common in scientific Python

def calculate_area(length, width):

11

Calculate the area of a rectangle.

Parameters
length : float

The length of the rectangle.
width : float

The width of the rectangle.

Returns
float
The calculated area.

return float(length * width)

Practical Exception Handling Patterns

The PDF shows try/except basics. Here are real-world patterns you’ll use frequently.
Pattern 1: Retry Logic

import time

def fetch_with_retry(url, max_attempts=3, delay=1):
"""Attempt an operation multiple times before giving up.
for attempt in range(max_attempts):
try:
return fetch_url(url)
except ConnectionError:
if attempt < max_attempts - 1:
time.sleep(delay)
else:
raise

Pattern 2: Exception Chaining

Preserve the original error while adding context:

def load_config(filepath):
try:
with open(filepath, "r") as f:
return parse_config(f.read())
except FileNotFoundError as e:
raise ConfigError(f"Config file missing: {filepath}") from e

12

P

except ValueError as e:
raise ConfigError(f"Invalid config format in {filepath}") from e

attern 3: Logging Exceptions

import logging

logger = logging.getlLogger(__name__)

def process_data(data):

P

try:
return transform(data)

except Exception:
logger.exception("Failed to process data") # Logs full traceback
raise # Re-raises the original exception

attern 4: Cleanup with Exception Info

def process_file(filepath):

S

file = None

try:
file = open(filepath, "r")
return process(file.read())

except IOError as e:
print(f"I0 Error: {e}")
return None

finally:
if file is not None:

file.close()

print("Cleanup complete")

ummary

Understanding these foundational concepts will help you:

Write functions that behave predictably (scope, mutable defaults)
Handle errors more precisely (exception hierarchy)

Work with text files reliably (encoding)

Apply the with pattern beyond files (context managers)

Structure larger projects properly (import system)

Document code for future maintainability (docstrings)

Handle real-world error scenarios (exception patterns)

13

These concepts bridge the gap between writing code that works and writing code that is robust,
maintainable, and professional.

14

	Python Architecture Pillars: Supplementary Guide
	Table of Contents
	Introduction
	Understanding Variable Scope in Functions
	The LEGB Rule
	Practical Example
	The global and nonlocal Keywords
	Why This Matters for Functions

	Mutable vs Immutable Default Arguments
	The Problem
	Why This Happens
	The Solution
	Rule of Thumb

	The Exception Hierarchy
	Python’s Exception Tree (Simplified)
	Why the Hierarchy Matters
	Best Practice: Be Specific
	Never Catch BaseException

	File Encodings Explained
	What is Encoding?
	Common Encodings
	Always Specify Encoding
	Handling Encoding Errors
	Detecting Unknown Encodings

	Understanding Context Managers Beyond Files
	What Context Managers Do
	Common Built-in Context Managers
	Creating Your Own Context Manager

	Import System Deep Dive
	How Python Finds Modules
	Import Styles and When to Use Them
	Relative vs Absolute Imports
	The init.py File

	Docstrings: Documenting Your Code
	What is a Docstring?
	Basic Format
	Accessing Docstrings
	Popular Docstring Styles

	Practical Exception Handling Patterns
	Pattern 1: Retry Logic
	Pattern 2: Exception Chaining
	Pattern 3: Logging Exceptions
	Pattern 4: Cleanup with Exception Info

	Summary

