LEVEL UP YOUR PYTHON: FROM SCRIPTS TO SCALABLE APPLICATIONS

Mastering the Four Pillars of Professional Code: Reusability, Resilience, Persistence, and Organization.

® main.py X

MODULAB
COMPOMENTS

data_processor = "data_processor"

connection_string = "connection_string"

user 1nput = | s.seuser, input()

if user Invalid input:
return "Error: Invalid input"
else:

recurn user

def save to database:
data = peristessety("connection_dataa_value")

-~ _.-'_'__.-' i S o] '-._'::_.____ o - '-.____ - ____'.'-.::'
return data ¥ ~ | " ™— SGCALABLE
it " ARCHITECTURE

eturn data.sater()] i o “— PERSISTENT

I STORAGE UNIT
e RESILIENT d

FOUNDATION

& NotebookLM

THE ARCHITECT'S
JOURNEY

We're moving beyond code that simply
works to architecting code that /asts.
This journey will equip you with the
four pillars of robust software design.

THE LIBRARY

Designing a Scalable
Structure with Modules

THE MEMORY

Adding Persistent
Data with Files

THE FAILSAFE

Engineering Resilient
Code with Exceptions

THE BLUEPRINT

Building Reusable
Code with Functions

&1 NotebookLM

PILLAR 1: FUNCTIONS ARE YOUR REUSABLE BLUEPRINTS

The first rule of smart architecture is to avoid repetition. Functions let you define a
piece of logic once and use it everywhere.

THE PROBLEM: REPETITIVE CODE

Calculating for 5 and 3
resultl = 5 + 3

print(F™5 + 3 = {resulti}®)

Calculating for 10 and 20
result2 = 10 + 20

print(f"10 + 20 = {result2}")

THE SOLUTION: A REUSABLE FUNCTION

The keyword "def’ Parameters are

starts the blueprint. ‘the inputs. v/
def add_numbers(a, b): E

result = a + b

| print(f"{a} + {b} = {result}")— The body
contains the

logic.
add_numbers(5, 3) IR OUEDUESESEARER= g

add_numbers(10, 20) # Output: 10 + 20 = 30

Call the function to

reuse the logic.

Function names should be lowercase with underscores (snake_case) and be descriptive.

& NotebookLM

A GOOD BLUEPRINT IS FLEXIBLE AND PRODUCTIVE

Parameters are the inputs that customize your function’s behavior. The "return” statement
Is the finished product it delivers.

PARAMETERS: THE INPUTS

Default Parameters: Make your blueprints more versatile.
Parameters with defaults must come after those without.

"Alice"

-
EBobises H1G ;/V

=| greeting="Hello"

Hello, Alite!]

greet()

_#,4?
I~ Hi, Bob!

def greet(name, greeting="Hello"):
print(f"{greeting}, {name}!")

greet("Alice")

greet("Bob", "Hi")

Output: Hello, Alice!

Output: Hi, Bob!

‘return : THE OUTPUT
Returning a Single Value

def add(a, b):
return a + b

result = add(5, 3) # result is now 8

add(s, 3)—> add) [—>[8]

Returning Multiple Values

def calculate(a, b):
returna + b, a-b, a*bh

alculate(10, 5)

—p
calculate(10, 5) —P| calculate() (15, 5, 50)

&1 NotebookLM

ADVANCED BLUEPRINTS FOR ULTIMATE FLEXIBILITY

Master the tools for handling a variable number of inputs and creating quick, on-the-fly functions.

*args': The Collector's Bag “**kwargs’: The Labeled File Cabinet
Collects multiple arguments into a tuple. Use it when you don't Collects keyword arguments into a dictionary. Perfect for
know how many inputs you'll get. handling named options.

3 def sum_all(*args): = def print_info(*xkwargs):
4115 total = 0 o "‘H‘bf'“’j age: 25 } for key, value in kwargs.items():

1)(2]
for num in args: print(f"{key}: {value}")
\\,J‘(f_ total += num m

e

return total print_info(name="Alice", age=25)
— print(sum_all(1, 2, 3, 4, 5)) # Output: 15 — | # Output: name: Alice, age: 25
kwargs I
Ihl—l" -

4

Lambda: The Disposable Tool
students = [{"name": "Bob", “grade": 92}, {"name": "Alice", "grade": 85}]

Small, ‘smgle-llme, anonymous functions. Ideal for quick, inline oS T e g T
tasks like SDI'tII'Ig. sorted_students = sorted(students, key=lambda s: s["grade"])

&1 NotebookLM

PILLAR 2: BUILDING FOR RESILIENCE BY PLANNING FOR FAILURE

Great architects don't just plan for success; they anticipate what can go wrong. Exceptions are
errors that occur during execution. Handling them prevents your application from crashing.

Without try/except’ With try/except
User enters '0° try:
number = int(input("Enter a number: ")) # User enters '0Q'
number = int(input("Enter a number: ")) number = int(input("Enter a number: "))

nu
i u

result = 100 / number result = 100 / number

except ZeroDivisionError: error
print("Cannot divide by zero!")

CRASH! ZeroDivisionError

Program continues gracefully.

Handled
Gracefully

&1 NotebookLM

THE COMPLETE TOOLKIT FOR (_stortexecution)
HANDLING ANY SITUATION \

Use the full “try" block structure to manage success, S o oCl
: A Eag Attempt the main logic here
failure, and cleanup with precision. "
No Exception Exception Occurs
try: \[
The "Optimistic Path"
— . n . M “else” Block
number = int(input("Enter a number: ")) e T, Hﬁﬂign
result = 100 / number occurred
except ValueError:
EECD‘U’EI‘}J’ P-!-an .A ValueError ZeroDivisionError
print("Invalid input!") ik J
except ZeroDivisionError: “except ValueError “except ZeroDivisionError
Recove ry Plan B Handle speEg‘lr-; error types Handle spech'i:lrg BITOr types
print("Cannot divide by zero!") L J
else: I
The "Success Path"
print(f"Result: {result}") \ N AIWH:::E:'LEL?;‘; "
finally:

The "Always-On Cleanup Crew"

print("Operation completed.") End

&1 NotebookLM

KNOWING COMMON FAILURES AND
CREATING YOUR OWN ALARMS

Common Built-in Exceptions Raising Your Own Alarms
A quick-reference table of errors you'll frequently Use the raise keyword to signal that
encounter. an error has occurred according to your '
program's logic. This is how you
Exception Name Description enforce your own rules.
ValueE An operation receives an argument
Lot with the right type but an der yilhdar reare)
|napprupr[ate‘value. R b
TypeError An operation is performed on an raise ValueError("Age cannot be negative") «———
object of an inappropriate type. if age > 150:
: ; + raise ValueError("Age seems unrealistic")
FileNotFoundError | Afile Urdlrecmry s requested but return True
doesn't exist. Enforcing an
KeVE e _ LOY:L architectural rule: |
eykerror A dictionary key is not found. validate_age(-5) age must be a
T except ValueError as e: positive number.
IndexError A sequence subscript is out of print(f"Vvalidation error: {e}")
range.

& NotebooklLM

PILLAR 3: GIVING YOUR APPLICATION A MEMORY WITH FILES

An application that can’t remember anything is a temporary tool. File 1/0 (Input/Output) allows
your program to save data and state, making it persistent.

1 9 3 The Gold Standard: The ‘'with" statement
The recommended way to work with files is the
‘with open(...) as f: syntax. It's a key
resilience feature: it automatically handles
closing the file for you, even If errors occur.

data.txt data.txt data.txt # The safe, modern, and recommended approach
Program Ends with open("data.txt", "r") as file:
: : content = file.read()
Program Runs & Writes Data Program Terminates Data Persists # The file is automatically closed when
this block is exited.
The “data.txt file and its content remain available for future HinCommon file modes:
execution, even after the program has stopped. # °r" - Read (default)

"w" - Write (overwrites existing file)
"a" - Append (adds to the end of the file)

&1 NotebookLM

YOUR PRACTICAL TOOLKIT FOR FILE SYSTEM INTERACTION

/]
W\

Reading From Files

- file.read()

- Reads the entire file content into a
single string.

- for line in file:

- The most common way to iterate
through a file line-by-line.

- file.readlines()

- Reads all lines into a list of strings.

Writing To Files

- file.write('some string\n')
- Writes a string to the file.

Remember to add newline
characters ("\n’).

- file.writelines(['line1l\n"',
'"line2\n'])

- Writes a list of strings to the file.

Navigating with the
"os Module

Check Existence
os.path.exists("data.txt")

- Before reading a file, check if it's
there to prevent a
'FileNotFoundError".

Build Paths

os.path.join("folder", "file.txt")

- The professional, platform-
independent way to create file

paths. It handles the correct
separators (/" or '\') for you.

& NotebookLM

PILLAR 4: ORGANIZING FOR SCALE WITH MODULES

A single, massive blueprint becomes unmanageable. As your project grows, you must
organize your code into a library of specialized blueprints called modules. A module is
simply a Python file (. py) containing functions and variables.

Before

mymodule.py # main.py

def greet(name): import mymodule
return f"Hello, {name}!"

print(mymodule.greet("Alice"))
P& =31 159 print(mymodule.PI)

& NotebookLM

USING PRE-BUILT LIBRARIES AND MAKING
YOUR MODULES REUSABLE

The Standard Library: Don't Reinvent the Wheel s Eeoead A=
You don’t have to build everything from scratch. Python {__E} gE ﬁ ﬁ —
includes a massive "batteries-included” standard library of 9 wg 5\ R)
modules for common tasks. : :

json datetime random oS

The Professional’s Switch: 'if __name__=='__main__"

This special block of code runs *only* when the file is executed directly, not when it's imported as a module. It's the
standard way to include test code or a script's main logic within a module file.

in mymodule.py

def greet(name): Importable Library

return f"Hello, {name}!" (greet() only) 1
This code 1s for testing and only runs when you Freetfavctlfra —@ @ '?r””?ﬂb:: SC“F‘E
execute 'python mymodule.py' directly. JLESL RO est code runs
I name. == " amainT

print("Testing the greet function...")
print(greet("world"))

&1 NotebookLM

THE CAPSTONE: ASSEMBLING THE MASTERPIECE

Let's see how all four pillars come together to build a single, robust
application: a command-line Task Manager.

v/ Add Tasks: Create new tasks with a
description and priority.

v Complete & Delete Tasks: Manage the task
lifecycle.

v List Tasks: View all pending or completed
tasks.

v’ Persistence: Tasks are automatically loaded
from and saved to a “"tasks.json" file. The
application remembers everything.

v' Robustness: Handles bad user input and file
errors gracefully.

[
[
[

v

== Task Manager ===

. Add task

. List tasks

. Complete task
. Delete task

. EMALE

] 1. Design presentation slides (HIGH)
] 2. Write visual prompts (MEDIUM)
] 3. Architect the narrative (MEDIUM)

Enter choice: _

& NotebooklLM

DECONSTRUCTING THE TASK MANAGER’'S ARCHITECTURE

PILLAR 1: REUSABILITY
(FUNCTIONS)

Each core feature is
encapsulated in its own
reusable method—our
blueprints in action.

PILLAR 4: ORGANIZATION
(MODULES)

We're not building from
scratch. We leverage
pre-built libraries for JSON
handling and file system
interaction.

-

import json,

0s, from datetime 1mport datetime

class TaskManager:

it

de%'iﬂad_tasks{self}:

(try:

LS

except json.JSONDecodeError:

with open(self.filename, 'r') as file:
self.tasks = json.load(file)

print("Error: Task file is corrupted.”)

%,

rdef save_tasks(self):
with open(self.filename, 'w') as file:

-

~—— PILLAR 2: RESILIENCE

(EXCEPTIONS)

This is our failsafe. The app
doesn't crash if the save file
IS corrupted; it recovers.

json.dump(self.tasks, file, indent=2) L PILLAR 3: PERSISTENCE

R

def add_task(self, descriptiun):1

def list tasks(self):
.

. LOEIC ...

LOSIch .

(FILES)

Here is the application's
memory. We use the ‘with’
statement and the "json’
module to save our task list
to disk.

&1 NotebookLM

YOUR ARCHITECTURAL
JOURNEY CONTINUES

You now have the foundational tools of a Python software architect.

By building with these four pillars in mind, you will create code that is
not only functional but also clean, robust, and built to last.

|5 & S

L

Reusability: Resilience: Persistence: Organization:
Build with Plan with Remember Scale with
Functions Exceptions with Files Modules

Happy Architecting!

& NotebookLM

